答 | |
例の46382−32648=13734 の場合 | |
1+3+7+3+4=18 となり18は9で割り切れます。 | |
このように順番を入れ替えてつくった数の差の各位の数の和は | |
9で割り切れます。 | |
したがって選んだ1つの数以外の読み上げてもらった数の和に、ある数 | |
をたして9の倍数になるのであれば、そのある数が選んだ数ということ | |
になります。 | |
理由 | |
また、ある数が9の倍数であれば、その数の各位の数の和は | |
9の倍数になります。 | |
たとえば、5桁の数 abcdeの場合 | |
abcde=10000a+1000b+100c+10d+e | |
=(9999a+999b+99c+9d)+(a+b+c+d+e) | |
ここで1番目の( )の部分は9の倍数であるから、 | |
5桁の数abcdeが9の倍数であるなら、2番目の( )の | |
部分a+b+c+d+eは9の倍数でなくてはならない。 | |
注意; 9の倍数にある数を足して9の倍数になるなら | |
その、ある数は9の倍数です。 | |
IMDパズルランド TOPへ |